ONE CLASS OF MOTIONS OF A FLUID ELLIPSOID

0. M. Lavrent'eva UDC 532.529.6

The motion of a finite mass of an ideal fluid completely bounded by a free surface in
which the wvelocity vector is a linear function of the coordinates is discussed. Surface
tension and body forces are absent. One should note that motion with a linear velocity field
is also possible in the more general case in which the fluid particles may be attracted ac-
cording to Newton's law (for example, see [1]). The region occupied by the fluid necessarily
has the shape of an-ellipsoid. The motion of a fluid ellipsoid in the absence of body forces
was investigated by L. V. Ovsyannikov in [2], in which in particular exact solutions were
found which describe the deformation of an ellipsoid of revolution and instability &f po-
tential motions relative to vortical perturbations is shown. TFor all the solutions constructed
in [2], the directions of the constant momentum and circulation vectors coinecide with the
direction of one of the axes of the ellipsoid. All motions possessing this property are in-
vestigated in this paper. The instability of the exact solutions obtained in [2] relative to
perturbations which conserve momentum and circulation is proved. Under certain additional con-
ditions exact asymptotic changes in the lengths of the semiaxes of the ellipsoid are obtained
at large values of the time.

1. Statement of the Problem. At t = 0 let the directions of the coordinate axes coincide
with the directions of the ellipsoid axes, and let the origin of coordinates coincide with the
center of mass of the ellipsoid. Then for the class of motions under discussion the velocity
field u and pressure field p can be represented in the form [2-4]

u(z, t) = A’ (A Yz, p(z, t) = —(p/2)a(t)(zA 14 * 1z — 2c).

Here p is the fluid density, ¢ is an arbitrary positive constant, and A(t) and a(t) are an un-
known matrix and scalar function which satisfy the system of equations

A7 = a(nas (1.1
detAfrz3 (1.2)

and the initial data
AQ0)=N, A (0)= (1.3)

where N is a diagonal positive matrlx and Ao is an arbltrary matrix satisfying the matching
conditions with Eq. (1.2) det M = n®, Sp(N‘lAa) = (), a prime denotes differentiation with re~
spect to the time, and * denotes transposition of the matrix.

The equation of a free surface is of the form xA™*A% 'x = 2c.

We note that the transformation t - n?t, A + nA leaves Eq. (1.1) unchanged, and Eq. (1.2)
reduces to the form det A = 1. It is assumed everywhere below that this transformation has
already been made.

The unique solvability of the problem (1.1)-(1.3) for all t > 0 was proved in [3]. Some
sufficient conditions for the unbounded increase of one of the ellipsoid semiaxes have been
established in [4], and it has been shown that the solution of the system (1.1) and (1.2) de-
scribes the motion of a point along a geodesic on the surface det A = n® in R® at a constant
velocity, which has permitted finding a new class of exact solutions in this problem with a
matrix A linear in t.

Following [2, 3], one can reduce the system (1.1) and (1.2) to the normal form:
= [Sp(A~1A")"/Sp(471A* 1) ]A*1, (1.4)

Equation (1.2) is the zeroth-order integral of the system (1.4). TIn addition this system
has seven more first-order integrals corresponding to the physical laws of energy conserva-
tion
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(1/2)Sp(4’A'*) = E, (1.5)
momentum conservation

A'A* — 44'* = C , (1.6)
and circulation conservation

A'*A — A*4A" = L, 1.7
where E is a positive constant and C and L afe constant antisymmetric matrices.

Now let the matrices C and L have the form
0 —c¢ O (OZO
C={e 0 0}, L={—1 0 0},
(o 00 000) (1.8)

i.e., the direction of the momentum and circulation vectors coincides with the direction of
the x5 axis. 1In this case the soluticn of the problem (1.4) and (1.3) is of the form

a

]

1 2
A(t) =

3 1

< ow

0
a 0 ].
0 a
o

If one makes the variable replacement A(t) = 0;2Q,, where Z = diag(zy, Zz, 23),

cosp —sing 0 -/ cosP sinyp O
Q,=[sing cos @ 0), sz(_sintp cosy 0},
0 0o 1 0 0 1
Eq. (1.2) is written in the form
‘zlzszs =1, (1.9)

and the system (1.1) will take the form

Z: =a(t) Zfl + Zy ((P,Z -+ 11912) — 2z2(p"lp’, (1.10)
2 =a(t) 5 + 2, (9" + ') — 22, 9"},
zy=a(t) 25}

Q"2 — Y2, - 2077 — 29z, = 0,

¢z, — 'z + 207z, — 2’z = 0 (1.11)

after multiplication by 0," on the left and by Q;' on the right. The identities

2722, — @' (4 +5) = (1.12)
2(Przlz2__.lp’(zi..}_ zg)=l’ |

which are identical to the integrals (1.6) and (1.7) if the matrices L and G are of the form
(1.8), follow from Egqs. (1.11).

If one expresses ¢' and §' from (1.12) and substitutes into (1,10),
5 =a(t)st + [(c2 +12) z (zi4 — 323 - 24222) — 2z, (zé4 — 324 2:%23)] (zi —22)7,

z; = a () 2.2_1 + [(62 -+ l%).z2 (z‘é‘ — 3z} + 22322) — 2clz, (z; — 3z‘§ + 2z§z§)] (z?_ —_ zg)—‘l, 35 =a(t) 23_1 (1.13)

is obtained. One can write system (1.13) in the more compact form

z; = a(t) st -+ c (z+ 22)—3 +ef (5 —2)7%

f=a e (n+5) 70— (n—2) " (1.14)

”

%3

=a(t) s,
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having set c¢; = (Zb—-c)//z-and ca = (T + c) /Y2,

If one dlfferentlates (1.9} twice and uses (1.14), one can obtain an expression for a(t)

in terms of z; and z1
a)=| 2 — 5 + ' . 1.1
i=1 %i =1 s un ()’ zlz-z(z1_z2)2] (1.15)

=1 "i $=1

[Cxey

The energy integral (1.5) in terms of cy and z{ 1s of the form

.2 2
22'.2_%* 14 g . (1.16)

Tt was shown in [4] that for any solution of the system (1.14) and (1.15) at least one
of the following equations is true:

t_t[igzi (t) = oo. (1.17)

When i = 3, Eq. (1.17) is possible only if ¢y, = ¢, = 0. One can assume without restricting
generality that limsz (f)=0o 1is satisfied.

t—o0

Taking z, as the new independent variable, using the identity (1.16), and expressing zg
from (1.9), one can reduce the system (1.14) and (1.15) to a single nonautonomic second-order
equation:

d*z o /da3 = 227 1(zf—;—z2—[—41 2) [ 2—{—(z2z——z)dz/dz +(z
— 2,73) (dz,/dz,)* — 53z, (dﬂ jdz ] -+ E7 1+ o7t *2+2r3 7 3dz,jdz, +
(14 57225 %) (o fdz )] (e} (2, + 2572 (L — day/dz) [ (2 + 5) ™t — 22 (zl+z +

+ 233 B ‘1] + 2 (z — zz) [(z.1 — z, )"1 (14 dz,/dz) + 2,2, (z1 z + zlzg)"l (1— dzg/dzl)]}.

(1.18)

2. Asymptote of the Solutions at t - . First we shall consider solutions for which the
matrix A is diagonal, A = diag(z;, z2, zs). It has been shown in [1] that the condition L =
= (0 is necessary and sufficient for the matrix A to be diagonal in some coordinate system.
The quantities z;, zs, and zs should evidently satisfy the system (1.14) and (1.15) with ¢,
cz = 0. It is not difficult to see that in this case the right-hand sides of Eq. (1.14) are
non-negative; therefore

"

zi>0, i=1,2,3, 2.1
1
whence we conclude that if z;(t*) > 0 for some t*, the inequalities

3 (%) (t — %) 2 (1) <5, () <5, (%) + (¢ =19 VE (2.2)

are satisfied for all t > t*. The upper limit in (2.2) follows from (1.16). It also follows
from (2.1) that if zy(t) is bounded, a value of c exists .such that

— a7t < 2 (1) <0. (2.3)
Evaluating the right-hand side in (1.14) using (2.2) and (2.3), one can obtain 4 detailed
asymptote of z4{(t) at large t.

First let us consider the regime of motion in which as t + « two ellipsoid semlaxes Z,
apd Zz, increase without limit. A sufficient condition for its realization is: zl(O) > 0 and

z2(0) > 0. The existence of bj and di such that
H <z ()< dit, b, <z (< (2.4)

1

follows from the bound (2.2) at sufficiently large t. Using (2.4), we shall estimate the
value of a(t) at large t. By virtue of (1.9) we have

alt) =2 (2;2 -+ z;z + zizg)——l (21221—2 -+ z;222—2 1 z'z' Zl_lz;:l) <2 (b]—-'zt—2 +

b7 %72 - d2d2et) L (@320 4 a2t - d T i ) <y

The lower bound is obtained just as exactly. Finally, we have

8t~ % < a(t) < w8 (2.5)
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Substituting the bounds (2.4) and (2.5) into Eqs. (1.14) and integrating the differential
inequalities obtained, we conclude that there exist comstants a; > 0, B{, vi > 0, §; >0
such that at large t

wt+ By F < 50 S ot By o 8 (2.6)

is satisfied. The bound zs(t) follows from the bounds (2.6) and the integral (1.9) and
has the form zs(t) = 0(t™%) at t-,

Tn addition to what has just been described, two other regimes of expansion of the el-
lipsoid are also possible at t - .,

1. One axis z; tends to infinity as t - =, and another axis zs tends to zero, and the
third axis z, tends to some constant a, which is different from zero. There exist positive
a1, B1y, Yrs Y2zs Y3 such that

ot + By F it < () < ot B+ et 9.7
AN R N i (2.7)
2. The omne semiaxis z, tends to infinity as t - «, and the other two tend to zero. In

this case the following inequalities are satisfied: ‘

agt -+ B < 5(f) < agd -+ By + vt (2.8)

with some B4y, a; > 0, yi > O,

i
Now we shall consider the overall system (1.14) in the case c? « c3. It is evident
from formula (1.15) that in this case a(t) > 0, and consequently the inequalities z% > 0 and

z4 > 0 are satisfied if z,(0) > z,(0).

Proceeding just as in the case ¢, = ¢, = 0, one can show that bounds of the type (2.8)
are satisfied for an infinitely increasing ellipsoid semiaxis.

3., Stability of the Exact Solutions. Equation (1.18) with c, = 0 has the solution z; =
z,, and with ¢; = c, = O it has in addition the solution z, = z7¥?. The corresponding solu-
tions of the system (1.1) and (1.2) describe the deformation of a fluid elllps01d of revolu-
tion; in the first case two semiaxes of this ellipsoid increase without limit as t + «, and
in the second case — one. Both of these solutions were found by L. V. Ovsyannikov. It was
shown by him that the second solution, which describes the potential motion of a fluid, is
unstable with respect to vortical perturbations (for Eq. (1.18) this means that its solution
z, = 27Y* is unstable with respect to perturbations of the parameter cy); as small vortical
perturbations as desired lead to the fact that as t » « two ellipsoid semiaxes increase with-
out limit and not one, as in the original solution. It is shown below that as small poten-
tial perturbations of this motion as desired lead to the very same result. Instability of
the first motion with respect to perturbations which conserve momentum and circulation has
also been shown, i.e., instability of the exact solutions of Egs. (1.18) z, = z7 2 and z, =
z, with respect to perturbations of the initial data has been proved.

Let ¢, = 0. Let us introduce the notation z, = y and consider the Cauchy problem for
Eq. (1.18)

2y (¥o) = ¥y ‘?iz/dy =14z at y=y,
The solution z,(y) is sought in the form z,(y) =y + z(y). Equation (1.18) takes the form
3= —2y7y + 22 + 2y + 2+ Yy + 2 )41 [3y% +
+ 3yz® + B + 2(3y® + %z + 5yz* + ) + 2By + Siz + y2?) + (3.1)
+ P+ y)] — a2y + A7HEY + 9T — (4 ) 20
+ 2+ 24 My + T iy 97+ 21 DYy + g+ (it + 0y + 9 (1 29,

in the variables v and z, where z = dz/dy, z = d®z/dy?, ¢ = c?/E. Now let y, > 2 and the
inequality

max(jal, |2)/y) < 1/16 (3,2)
be satisfied on some interval (yo, vi). Multiplying both sides of Eq. (3.1) by 2z and evalu-
ating the right-hand side und :r the conditions (3.2), one can obtain

d(z0/dy < (3/4)y~
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whence it follows that
BRI LR 428
and this means condtion (3.2) is satisfied for all y only if
B» <270 - (3.3)

Now let (3.3) be satisfied. We multiply both sides of Eq. (3.1) by 2y~ °(y + z)[2y* +
2yz + z®+y"(y + 2z)“] and evaluate the right-hand side with the help of the inequality (3.2).
After simple transformations we obtain that if y > y, » max(2, ey,

d Y2, 2 ?
W{zz—;g—uyumwwly* (y+z)4l—~§:;}>0
and consequently,
Py (gt o) (207 2+ 2 ot 00 — B2 = 2 (2000 (3.4)
Using the inequalities (3.2) and (3.4), we obtain
2> .z%y of (40}
from which
l 2 l > ‘ z‘ﬂ l yTO-/Z (gllz —_ yz/’Z)
follows.

Thus it has been shown that the solution z; = z, of Eq. (1.18) is unstable when z, >
max(2,c/3).

The following assertion is also true: For any positive a < 1 values of y, and § are found
such that the solution of the Cauchy problem z(yo) = 0, z(yo) = 2o for Eq. (3.1) satisfies
the inequality

2 () 1322 | (0" — 5)
for all y > yo only if léo[ <8, yo > V1.

For proof of this assertion it is necessary to multiply both sides of Eq. {(3.1) by
5(y + z)"2077[2y? 4+ 2yz + z® + y*(y + 2)*] and perform discussions similar to those above in
the case a = Y.

Now let ¢y = ¢, = 0. 1In this case the inequalities (2.6) are satisfie’ for the ellip-
soid axes z.; and z, which increase without limit. By virtue of what has been proved above,
if for some to

5y (L) = %y (fg)r 21 (Bg) F % (tp)r
o, # @z in the inequalities (2.6), and consequently for large t the quantity Iz] = ]zl —-zz|
increases as a linear functien of t.

Equation (1.18) with ¢; = ¢, = 0 has, in addition to what has been discussed above, the

exact solution zz = zT¥?. It will be shown below that the solution of the system (1.14) and

(1.15) corresponding to it is the only solution of this system in the case ¢, = ¢z = 0, in
which the lengths of two ellipsoid semiaxes tend to zero at t -+ =,

We note that with ¢, = csz = 0 the inmequalities (2.1) and (2.2) and the energy integral
22 (14 27450 + 2527 3 22 (U 7% ) = B

occur for the solution of thekproblem (1.14) and (1.9). It follows from this that if Z,(v1)
> 0 for some y,, the inequality

() 3 5a0) [L+ ¥ 825% (0) + 22 (1) W55 () T R ) A ) s )] (3.5)
is satisfied for all y > y;. »

Now let us assume that there exists a solution of Eq. (1.18) with c¢; = cz2 = 0 other than
zz = z17%, such that

lim 3, (5) = lim [42, (1)) 2 =0, (3.6)
Y- Yoo

By virtue of the property mnoted above of the solution (3.5), the semiaxes z, and z, = (yzz)~'
should decline as y increases:
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5, <0, ¥zt 0. (3.7)

It follows from (3.6) that foranye > 0 a y,(e) is found such that when y > y2(e)
(ey) ' ¢ 2z, < €. We shall assume that there exists a yo > vy, (0.04) such that

22, (1) > — w3 2% (3.8)
Let us consider for Eq. (1.18) the Cauchy problem with initial data at the point yo:
Q) =5t ) =5 =5
By virtue of the inequalities (3.7) and (3.8),
0 <z, < ¥y ¥2[2. (3.9)
Let z = 2z, -y'”&. It follows from the continuity of the solution of (1.18) that (3.9}
is satisfied om some interval (yo,.¥1) Multlpiylng both sides of the equation by 2zy, add-
ing the quantity 2> + z®y~%/9 — 2zzy~ 1/9 — 2zy=¥*/3 to it, and evaluating the right-hand side
of the equation obtained, one can show that the inequality
d(zy — 2y dy > 0 (3.10)
is satisfied on the interval (vo, y:), whence it follows that if
_ 2,> | 5,195 /3 (3.11)
a y, exists such that 2z(y.) > yI@b. Thus instability of the solution z, = y“’/2 of Eq.
(1.18) has heen proven.

It is sufficient for proof of the fact that z, = y"”/2 is the only solution of (1.18)
which satisfies (3.6) in the case ¢; = ¢, = O to show now that for any solution of (1.18)
with the properties (3.6) and (3.7) other than z = y_l/2 a yo > yz (0.04) is found such that
for y = yo the inequalities (3.9) and (3.11) are satisfied for one of the functions z, z =
(yz2) ™} — vy~ . It is evident that z = z5 — y~¥* satisfies the very same equation as does z
if ¢4 = ¢z = 0 and all the assertions proved above for z are true for z.

For any continuous function z,(y) one of the three following assertions is true:
1) For any y: a Vo > Vi1 is found such that z,{yo) = yzyh;

2) there exists-a y: such that zz < y"l/2 for all y > y;; and

3) there exists a y: such that z: > y"l/2 for all y > yq.

Tn case 1 condition (3.11) is satisfied if z(y,) > 0, since z(yq) = 0, and Ié(yo)l >0
since in the opposite case the solution would coincide with z, =y~ Yeoqf z(yo) < 0, the in-
equalities (3.9) and (3.11) are satisfied for z.

Now~ let us consider case 2. We shall assume that for all y > y; > y, (0.04)
2 2y7t3 (3.12)

is satisfied; then integrating (3.12) and taking account of the fact that z < 0, we obtain

5 (9) <5 () v 20

which contradicts the positive nature of the quantity z, = z + y‘V& at sufficiently large y.
Thus it has been shown that there exists a yo > yz2 (0.04) such that

3 (1y) > 2 (4) U /3

from which (3.11) and the first of the inequalities (3.9) follow. The second inequality (3.9
follows from the assumption z, < O.

Case 3 reduces to case 2 if one considers zs; instead of zs.

The author expresses her gratitude to V., V. Pukhnachev for his attention to this paper.
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EXACT SOLUTION OF THE THREE-DIMENSIONAL PROBLEM OF IDEAL PLASTICITY

S. I. Senashov . UDC 539.374

Let r0z be a .cylindrical coordinate system, Or, 0g, O,, Trf, Tyrzs TOz be the components
of the stress tensor, u, v, and w he the components of the velocity vector, and k be the
yvield stress under pure shear.

The equations of ideal plasticity with the von Mises yield condition are of the form

de, ¢ Oty 9T, G.—0y

FTT @ tE T O
07,q 1 doy Oty 274
Gt T =0
or a0 T T =0
(Gr - 68)2 + (69 - 51)2 + (Gz _‘Gr)2 +6 ("730 + T?z + ng) 216,‘2’ (1)
du . 3 1 ov
A5y =20, — 0 — 0, X(T—{—-;—%):?o‘e—dz—ﬂr,

gﬂ 1 1 ¥
A P =20, — 0, —0g A T'a@""&):kezv

du | dw a 7 v 1 .
h(“a:-r‘a;‘):% *(f@?(?)%r‘??)ﬂnev

a av ow
5 () + 55 +r 75 =0,
O, - 0 + 0, = 3p.

We shall assume that

1:"_:17,_8=0. (2)
We shall seek the solution of Egs. (1) in the form
u= u*(Msh &, v=v*(r)ch &, w = w*(rich & p = p(r), &= 31 pO, (3)

where u*, v*, w* are functions only of r and B is an arbitrary constant. Then we obtain from
the incompressibility condition and Eqs. (2) a system of ordinary differential equations for
determination of the functions u*, v¥*, w¥*:

'dw* d 7v¥* ﬁ d .
w g =0, f?z?(——)JrTu*:o, = (ru¥) £ Bo* + rw* =0, (&)

r

and the equation
do /dr + (6, — 6g)/r =0 (5)

yvemains for the determination of the pressure p. The system of equations (4) reduces to the
Bessel equation

rPu’ + oru* — (2 PP DuF =0,
The solution of this equation is of the form
ut = CL) + GEM, v=VF+ 1 (6)

where I, are the Bessel functions of imaginary argument, Ky is the MacbDonald function, and
C, and C, are arbitrary comstants. If one sets C; = 0 in (6), the velocity field is of the
form
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