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The motion of a finite mass of an ideal fluid completely bounded by a free surface in 
which the velocity vector is a linear function of the coordinates is discussed. Surface 
tension and body forces are absent. One should note that motion with a linear velocity field 
is also possible in the more general case in which the fluid particles may be attracted ac- 
cording to Newton's law (for example, see [i]). The region occupied by the fluid necessarily 
has the shape of an ellipsoid. The motion of a fluid ellipsoid in the absence of body forces 
was investigated by L. V. Ovsyannikov in [2], in which in particular exact solutions were 
found which describe the deformation of an ellipsoid of revolution and instability of po- 
tential motions relative to vortical perturbations is shown. For all the solutions constructed 
in [2], the directions of the constant momentum and circulation vectors coincide with the 
direction of one of the axes of the elli~soid. All motions possessing this property are in- 
vestigated in this paper. The instability of the exact solutions obtained in [2] relative to 
perturbations which conserve momentum and circulation is proved. Under certain additional con- 
ditions exact asymptotic changes in the lengths of the semiaxes of the ellipsoid are obtained 
at large values of the time. 

i. Statement of the Problem. At t = 0 let the directions of the coordinate axes coincide 
with the directions of the ellipsoid axes, and let the origin of coordinates coincide with the 
center of mass of the ellipsoid. Then for the class of motions under discussion the velocity 
field u and pressure field p can be represented in the form [2-4] 

u(x , t )  = A ' ( t ) A - l x ,  p ( x , t )  = --(p/2)a( t ) (xA-1A*-!x  - -  2c)~ 

H e r e  ~ i s  t h e  f l u i d  d e n s i t y ,  c i s  a n  a r b i t r a r y  p o s i t i v e  c o n s t a n t ,  a n d  A ( t )  a n d  a ( t )  a r e  a n  u n -  
k n o w n  matrix and scalar function which satisfy the system of equations 

A "  = a ( t ) A * - l ;  (i.i) 

d e t A  = n 3 (1.2) 

and the initial data 
r 

A (0) = N, A' (0) = A 0 (i. 3) 

where N is a diagonal mositive matrix and A~ is an arbitrary matrix satisfying the matching 
conditions with Eq. (1.2) det N = n ~, Sp(N-*A~) = 0, a prime denotes differentiation with re- 
spect to the time, and * denotes transposition of the matrix. 

The equation of a free surface is of the form xA-IA*-*x = 2c. 

We note that the transformation t § n2t, A § nA leaves Eq. (i.i) unchanged, and Eq. (1.2) 
reduces to the form det A = i. It is assumed everywhere below that this transformation has 
already been made. 

The unique solvability of the problem (1.1)-(1.3) for all t > 0 was proved in [3]. Some 
sufficient conditions for the unbounded increase of one of the ellipsoid semiaxes have been 
established in [4], and it has been shown that the solution of the system (i.i) and (1.2) de- 
scribes the motion of a point along a geodesic on the surface det A = n 3 in R 9 at a constant 
velocity, which has permitted finding a new class of exact solutions in this problem with a 
matrix A linear in t. 

Following [2, 3], one can reduce the system (I.i) and (1.2) to the normal form: 

A "  = [Sp(A -1A ')~/Sp(A -1A * -1) ]A .-1. ( 1 . 4 )  

Equation (1.2) is the zeroth-order integral of the system (1.4). In addition this system 
has seven more first-order integrals corresponding to the physical laws of energy conserva- 
tion 
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( i / 2 ) S p ( A ' A ' * )  = E,  ( 1 . 5 )  

momentum conservation 

and circulation conservation 

A ' A *  - -  A A ' *  = C , 

A'*A--A*A'= L, 

where E is a positive constant and C and L are constant antisymmetric matrices. 

Now let the matrices C and L have the form 

C= 0 , L= -- 0 , 

0 0 

(1.6) 

(1.7) 

(1.8) 

i.e., the direction of the momentum and circulation vectors coincides with the direction of 
the x~ axis. In this case the solution of the problem (1.4) and (1.3) is of the form 

i a 2 O )  A ( t )  = 3 a.I 0 . 

0 a 5 

If one makes the variable replacement A(t) = Q:ZQ2, where Z = diag(z~, z2, z3), 

,olc~ i) (cos, i) Q1 = [ s in (p  cos(p , Q.z - - s i n ,  c o s *  , 
0 0 0 

Eq. (1.2) is written in the form 

z:z2z ~ = 1, ( 1 . 9 )  

and the system (i.i) will take the form 

z~' = a (t) z~': + z I (q/2 @ 9'2) _ 2z2(p,~, ' 

~3 = ~ (t) z~-:; 
rr , , ~ , t 

q)"Z 1 - -  * Z 2 -~- 2q~ z 1 - -  2 5 z 2 = O, 

~ '% - r  + 2~'z~ - 2 , ' ~ ;  = o 

(i.io) 

( 1 . 1 1 )  

after multiplication by Q~I 

which are identical to the integrals 
(1.8), follow from Eqs. (i.ll). 

If one expresses ~' and @' from (1.12) and substitutes into (i.i0), 

" -- 2 ~ ~2 2 2 2 --4 z I = a( t )  z l l  @ [(c 2 + / 2 )  zl (Zl 4 _  3z24 @ 2ZlZ~)_ 2clz 2 ( z ~ - -  3z14 @ 2.1z2) ] (z 1 -  z2) , 

" _ 2 2 ~. " (t> ~ - :  z 2 ---- a (t) z21 + [(c 2 4- l~)z~ ( za  2 - -  3z~ -~- 2z21z~) - -  2clz 1 (z41 3z~ @ 2ZlZ2) ] (z  1 - -  z~) -4 ,  z 3 ---- a 

on the left and by QT: on the right. The identities 

2~2'zlz~ - -  q / ( z~  -]- z.~) = c, ( 1 . 1 2 )  
�9 , 2 A _  2 2~ ZlZ 2 - -  Ip (Z  1 i Z2) = [,  

(1.6) and (1.7) if the matrices L and C are of the form 

(1.13) 

is obtained. One can write system (1.13) in the more compact form 

tp 
Z 1 = a ( t )  Z 1 1 _~ C~. (Zl  -~- Z9)--3 -~- r 2 (Z 1 - -  Z2)--3 ' 

rp 
Z 2 = a ( t )  z--12 + c2 ( z l  -~- z2) - -8  - -  c22 ( Z l  - -  z 2 ) - - 3 '  

lp 
z 8 = a ( t )  Z3 "1,  

(1.14) 
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having set c~ = (; -- c)/r and c= = (; + c)Ir 

If one differentiates (1.9) twice and uses (1.14), one can obtain an expression for a(t) 
in terms of z i and zi: 

The energy integral (1.5) in terms of c i and z i is of the form 

~ ; ?  + - 
C 2 

z "q- o E. (1.16) 
~=, ( ~  + ",) ( ~  - ~,S" 

It was shown in [4] that for any solution of the system (1.14) and (1.15) at least one 
of the following equations is true: 

lira z~ (t) = oo. (i. 17) 
~->oa 

When i = 3, Eq. (1.17) is possible only if ci = c2 = 0. One can assume without restricting 
generality that Iim z 1(t) = oo is satisfied. 

Taking zl as the new independent variable, using the identity (1.16), and expressing z3 

from (1.9), one can reduce the system (1.14) and (1.15) to a single nonautonomic second-order 

equa t ion : 

d%/dz~ = 2~;~q~ (~ + ~ + :44) -~ [ ~  + ( @~ -- 4)  d~./d~ + ( ~", -- 

- -Y,D ( ' % ! a ~ )  ~ - ~. , .  ( ,~jd~.~f]  + e -~ [~ + h h ; "  + 2~7~;~,~,/, % + 
(1.18) 

+ (~ + ~?~;,)(d~o/dzO~ l {c i (~  + ~;~- (t - ~ / d ~ )  [(~, + ~.)-~ - ~(~i + "~ + 
- , - ~ - ~  c~ (~, ~ ) -2  [(~ ~)-~(~ + d~./d~O + ~(~t  + ~ + +~)-~(~ d~je~O]}" T ~i*") 1 -r- -- -- z . - -  

2. Asymptote of the Solutions at t + ~. First we shall consider solutions for which the 
matrix A is diagonal, A = diag(zl, z2, z3)'. It has been shown in [i] that the condition L = 

C = 0 is necessary and sufficient for the matrix A to be diagonal in some coordinate system. 

The quantities zl, z2, and z3 should evidently satisfy the system (1.14) and (1.15) with cI 
c2 = 0. It is not difficult to see that in this case the right'hand sides of Eq. (1.14) are 

non-negative; therefore 

" ~ 0  i -- I,  2 3, zi~ ' ' (2.1) 
! 

whence we conclude that if zi(t*) > 0 for some t*, the inequalities 

z i (t*) -f- (t - -  t*) z~ (t*) < z i (t) < z i (t*) -k (t - -  t*) - [ /E  ( 2 . 2 )  

are satisfied for all t > t*. The upper limit in (2.2) follows from (1.16). It also follows 

from (2.1) that if zi(t) is bounded, a value of c exists �9 that 

r 
- -  ct - 1  < z i ( t )  < O. ( 2 . 3 )  

Evaluating s side in (1.14) using (2.2) and (2.3), one can obtain a detailed 

asymptote of zi(t) at large t. 

First let us consider the regime of motion in which as t + = two ellipsoid semiaxes z~ 
! 

and z2 increase without limit. A sufficient condition for its realization is: z1(0) > 0 and 
! 

z2(0) > 0. The existence of b i and d i such that 

bi t~z  i( t )~dit ,  b i < z ~ ( t ) ~ d  i ( 2 . 4 )  

f o l l o w s  f r o m  t h e  b o u n d  ( 2 . 2 )  a t  s u f f i c i e n t l y  l a r g e  t .  U s i n g  ( 2 . 4 ) ,  w e  s h a l l  e s t i m a t e  t h e  

v a l u e  o f  a ( t )  a t  l a r g e  t .  By v i r t u e  o f  ( 1 . 9 )  w e  h a v e  

(t) = 2 ( ~ i  ~ + ~-~ + -"- "-~-~ t ,~ - , ~ .  ,~ -~  , ,  -~  - i ~  2 ( b i - h - ~  + ~1Z2) ~Z 1 Z 1 -7- Z 2 Z$ -~- Zlg2Zl '?'2 ,~ ~'~ 

2 2 4 -I 2 --2 - 2  d ~ b - $ t - 2  _j_ d ld~b-~ lb~ l t -2  ) ~ ? t - O  + b$",-* + a~a~, ) (~b~ t + o. 0. 

The lower bound is obtained just as exactly, Finally, we have 

6t - 6  ~ a(t)  < y t  " ~  (2.5) 
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Substituting the bounds (2.4) and (2.5) into Eqs. (1.14) and integrating the differential 

inequalities obtained, we conclude that there exist constants ~i > 0, Bi, Yi > 0, 5i > 0 

such that at large t 

~i t + ~i + v~t-~ < z~(t) ~ %t + ~i + ~it-~ ( 2 . 6 )  

i s  s a t i s f i e d .  The bound  z ~ ( t )  f o l l o w s  f r o m  t h e  b o u n d s  ( 2 . 6 )  and t h e  i n t e g r a l  ( 1 . 9 )  and 
has the form z~(t) = O(t -~) at t§ 

In addition to what has just been described, two other regimes of expansion of the el- 

lipsoid are also possible at t § ~. 

i. One axis z~ tends to infinity as t § ~, and another axis zs tends to zero, and the 
third axis z~ tends to some constant g~ which is different from zero. There exist positive 

~, ~z, Y,, Ya, Ya such that 

a~t + ~1 + ~ t  -3 < z~(t)< ~ t +  ~ - ?  ~t-~, 
a~ < z~ < ~ + Wt-L (2 .7 )  

2. The one semiaxis zl tends to infinity as t * ~, and the other two tend to zero. In 

this case the following inequalities are satisfied: 

sit  @ ~ ~ zl(t) < alt @ ~ @ ?it -t  ( 2 . 8 )  

w i t h  some Bi ,  ~ i  > O, Yi > 0. 

Now we s h a l l  c o n s i d e r  t h e  o v e r a l l  s y s t e m  ( 1 . 1 4 )  i n  t h e  c a s e  c [  < c~.  I t  i s  e v i d e n t  
from formula (1.15) that in this case a(t) > 0, and consequently the inequalities z~ ~ 0 and 

z~ ~ 0 are satisfied if z1(0) > z2(0). 

Proceeding just as in the case cI = c2 = 0, one can show that bounds of the type (2.8) 

are satisfied for an infinitely increasing ellipsoid semiaxis. 

3. Stability of the Exact Solutions. Equation (1.18) with c~ = 0 has the solution z= = 
zl, and with ci = c2 = 0 it has in addition the solution z2 = z7 V2. The corresponding solu- 

tions of the system (I.i) and (1.2) describe the deformation of a fluid ellipsoid of revolu- 

tion; in the first case two semiaxes of this ellipsoid increase without limit as t + ~, and 

in the second case -- one. Both of these solutions were found by L. V. Ovsyannikov. It was 

shown by him that the second solution, which describes the potential motion of a fluid, is 
unstable with respect to vortical perturbations (for Eq. (1.18) this means that its solution 

z2 = z7 ~/2 is unstable with respect to perturbations of the parameter c~); as small vortical 
perturbations as desired lead to the fact that as t § ~ two ellipsoid semiaxes increase with- 

out limit and not one, as in the original solution. It is shown below that as small poten- 
tial perturbations of this motion as desired lead to the very same result. Instability of 
the first motion with respect to perturbations which conserve momentum and circulation has 

also been shown, i.e., instability of the exact solutions of Eqs. (1.18) z~ = z71~ and z~ = 

z~ with respect to perturbations of the initial data has been proved. 

Let c2 = 0. Let us introduce the notation z~ = y and consider the Cauchy problem for 

Eq. (1.18) 

d z , / d g = i ~ z  o at y = y 0 .  ~2 (Yo) = Uo' 

The solution z2(y) is sought in the form z2(y) = y + z(y). Equation (1.18) takes the form 

= --2y-l(g @ z)-l[2y 2 @ 2yz + z ~ + y4(y @ z)4l-l[3y~z @ 

@ 3Yz 2 @ z 3 @ ~(3y a@ 9y ~z @ 5yz ~ -]- z a) @ ~(3y a@ 5Y 2z@y z~) @ ( 3 . 1 )  

@ ~a(ga + g~z)] -- ~(2y + z)-Z{(2Y @ z) -1 -- (y2 _~ yz)[2y z ~- 

@ 2yz + z 2 ~- y~(y @ z)a]-~}[l @ y-4(y+ z)-Z @ 2(t + ~)y-a(y + ~)-a @ (t @ ~)z y-Z(g @ z)-a@ (i @ ~)~], 

i n  t h e  v a r i a b l e s  y and  z ,  w h e r e  ~ = d z / d y ,  z = d 2 z / d y  2, c = e~ /E .  Now l e t  Yo ~ 2 and t h e  
inequality 

max(Izl, lz[/Y) ~ t/i6 (3,2) 

be satisfied on some interval (yo, Yl). Multiplying both sides of Eq. (3.1) by 2~ and evalu- 

ating the right-hand side under the conditions (3.2), one can obtain 

d(z~)/dy< (3/4)y -7, 
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whence it follows that 

and this means condtion (3.2) is satisfied for all y only if 

~ < 2 -~. (3.3) 

Now let (3.3) be satisfied. We multiply both sides of Eq. (3.1) by ~y-S(y + z)[2y= + 
2yz + z2+y4(y + z) ~] and evaluate the right-hand side with the help of the inequality (3.2). 

After simple transformations we obtain that if y > Yo > max(2, c~/~), 

f ' . ~ V + ~  z ~ + - w + ~  + ( v + ~ ) ~ ] - - ~  -~>10 

and consequently, 

Using the inequalities 

from which 

. . . .  s , ~ +  p . "2 2Vo~). [2v 2v,. + . r v  (v+~) i ' +  (v+z)  ~ ] - ? v - U z ~ o ( v o +  

(3.2) and (3.4), we obtain 

z 2 > ~VoT(~v), 

(3.4) 

[ z [ > i  ~ l .I /2 f,jII2 ,,II2"~ 
0 ~ v0 \~ -- ~O ) 

follows. 

Thus it has been shown that the solution z~ = z~ of Eq. (1.18) is unstable when z~ 

max(2,c~/~). 
The following assertion is also true: For any positive ~ < 1 values of Y2 and ~ are found 

such that the solution of the Cauchy problem z(yo) = 0, ~(yo) = ~o for Eq. (3.1) satisfies 

the inequality 

for all y > yo only if I~o[ < 6, Yo > Yl. 

For proof of this assertion it is necessary to multiply both sides of Eq. (3.1) by 
~(y + z)-2~-712y 2 + 2yz + z 2 + y4(y + z)4] and perform discussions similar to those above in 

the case ~ = I/2. 

Now let ci = c2 = 0. In this case the inequalities (2.6) are satisfie~ ~' for the ellip- 
soid axes z~ and z2 which increase without limit. By virtue of what has been proved above, 

if for some to 
t t ~ 

~ (to) = z2 (~o)' ~ (to) ~ z~ (o) ,  

~z # ~2 in the inequalities (2.6), and consequently for large t the quantity [z] = ]zl --z21 

increases as a linear function of t. 

Equation (1.18) wi,th ci = c~ = 0 has, in addition to what has been discussed above, the 
exact solution z2 = z7 ~. It will be shown below that the solution of the system (1.14) and 
(1.15) corresponding to it is the only solution of this system in the case cx = c2 = 0, in 

which the lengths of two ellipsoid semiaxes tend to zero at t + ~. 

We note that with c~ = c2 = 0 the inequalities (2.1) and (2.2) and the energy integral 

2ZlZ2Z 1 Z~ -~ ZI2Z$4 ) = E 

occur for the solution of the problem (1.14) and (1.9). It follows from this that if ~2(Yx) 

> 0 for some yx, the inequality 

�9 �9 �9 �9 _~ -1/~ 5 ) 

is satisfied for all y > y~. 

Now let us assume that there exists a solution of Eq. (1.18) with cx = c2 = 0 other than 

z2 = z~/2, such that 

l ira z~ (y) = lim [yz~ (y)]-I __ O, ( 3 . 6 )  
I/...-> oo ~1---> ~o 

By virtue of the property noted above of the solution (3.5), the semiaxes z2 and z~ = (yz2) -x 

should decline as y increases: 
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z~<0, y-1+z~zsl>0. (3.7) 

It follows from (3.6) that for any ~ > 0 a y2(E) is found such that when y > y2(E) 
(ey) -I ~ z2 < e. We shall assume that there exists a yo > y2(0.04) such that 

2~2 (Yo) > -- y~8/2 (3 .8 )  

Let us consider for Eq. (1.18) the Cauchy problem with initial data at the point yo: 

=~ (~0) = =0 + y;~"~' ~ (Yo) = ~ . -  v~/~/2" 
By virtue of the inequalities (3.7) and (3.8), 

o < ~o < v~/~/2' (3 .9)  

Let z = z2 -- y-~2. It follows from the continuity of the solution of (1.18) that (3.9~ 

is satisfied on some interval (Yo, Y~) Multiplying both sides of the equation by 2~y, addi- 
ing the quantity ~2 + z2y-2/9 _ 2~zy-X)9 _ 2zy-W2/3 to it, and evaluating the right-hand side 

of the equation obtained, one can show that the inequality 

d(~y -- z~g-1/9)/dy>----O (3.10) 

is satisfied on the interval (yo, y~), whence it follows that if 

~o > I~. lY~/~ ( 3 . 1 1 )  

a Yl e x i s t s  such t h a t  2 ~ ( y l )  > yT $2. Thus i n s t a b i l i t y  o f  t h e  s o l u t i o n  z 2  = y-V= of  Eq. 
( 1 . 18 )  has been proven. 

It is sufficient for proof of the fact that z2 = y-~2 is the only solution of (1.18) 
which satisfies (3.6) in the case c~ = c2 = 0 to show now that for any solution of (1.18) 
with the properties (3.6) and (3.7) other than z = y-i/2 a yo > y2 (0.04) is found such ~hat 
for y = yo the inequalities (3.9) and (3.11) are satisfied for one of the functions z, z = 
(yz2)-~ _ y-i/2. It is evident that z = z~ -- y-~= satisfies the very same equation as does z 

if c~ = c2 = 0 and all the assertions proved above for z are true for z. 

For any continuous function z2(Y) one of the three following assertions is true: 

I) For any y~ a Yo > Yl is found such that z=(yo) = y~=; 

2) there exists a y~ such that z2 < y-~/= for all y > Yl; and 

3) there exists a y~ such that z2 > y_~2 for all y > y~. 

In case 1 condition (3.11) is satisfied if z(yo) > O, since z(yo) = O, and Iz(yo)l > 0 
�9 _ y _ l ] 2  since in the opposite case the solution would coincide with z= = . If z(Yo) < 0, the in- 

equalities (3.9) and (3.11) are satisfied for z. 

Now let us consider case 2. We shall assume that for all y> y~ > y2 (0.04) 

< zy-U3 (3.12) 

is satisfied; then integrating (3.12) and taking account of the fact that z < O, we obtain 

which contradicts the positive nature of the quantity z~ = z + y-~ at sufficiently large y. 

Thus it has been shown that there exists a Yo > Y2 (0.04) such that 

(~o) > ~ (~o) ~ / 3 ,  

from which (3.11) and the first of the inequalities (3.9) follow. The second inequality (3.9) 

follows from the assumption ~= < 0. 

Case 3 reduces to case 2 if one considers z~ instead of z=. 

The author expresses her gratitude to V. V. Pukhnachev for his attention to this paper. 
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EXACT SOLUTION OF THE THREE-DIMENSIONAL PROBLEM OF IDEAL PLASTICITY 

S. I. Senashov UDC 539. 374 

Let r@z be a cylindrical coordinate system, a r, o'@, 
of the stress tensor, u, v, and w be the components of the velocity vector, and k be the 
yield stress under pure shear. 

The equations of ideal plasticity with the von Mises yield condition are of the form 

a~r I a~rO a~rz  (rr--% 
a-7 + T ~ -  + -~T -F 7 = o ,  

rJ'rrO I a% o't: O. q 2~rO 
___ i _ _  ) ~ ~ --0) 
d r - V  r "O'TJ-w--'O'~-~ " '- r - -  

{)'Crz , i O'rOz , OOz , "rrz 
--g7 + -7- --g-O- ~- --~- T ~ = O,, 

2 

/ u '1 OvX 
o.. z I V -  + V -  ~ )  2% - ~ -  o,, ~" -~r  = 2% - -  % - -  o z, - -  

O. ( t aw av ) 
~'~z =2Zz--C~r--% ' ~" -7"'00" +'~'z =2xOz' 

(o(§ 
;t "~z-F' --Or =2"~rz, L r ~  -Jr---r ~ =2"l:rO' 

a 6V Ow 
O r  (ru) + ~ + r T ;  = o, 

o r q- % ~ (r z = 3p. 

o z, TrB, Trz, Tez be the components 

( I )  

We shall assume that 

T,z = ~ro = O. ( 2 )  

We shall seek the solution of Eqs. (i) in the form 

u = u*(r)sh ~, v = v*(r)ch ~, w = w * ( S &  ~, p = p(O,  ~ = z + ~0, ( 3 )  

where u*, v*, w* are functions only of r and B is an arbitrary constant. Then we obtain from 
the incompressibility condition and Eqs. (2) a system of ordinary differential equations for 

determination of the functions u*, v*, w*: 

u * + - ~ - - r  = 0 ,  r--~r + - - ~ * = 0 ,  "~r ( r . * )+~v*Wrw*=O,  (4) 

and the equation 

d%/dr + (% -- %)Ir = 0 (5) 

remains for the determination of the pressure p. The system of equations (4) reduces to the 

Bessel equation 
~ u * " +  ru*' - -  ( ~  + ~ + l )u*  = O. 

The solution of this equation is of the form 

u* = C~[~(r) + G K ~ ( O ,  ~ = 1 / ~  2 + L ( 6 )  

where Iv are the Bessel functions of imaginary argument, K~ is the MacDonald function, and 
CI and C2 are arbitrary constants. If one sets C2 = 0 in (6), the velocity field is of the 

form 
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